Östman, Örjan
- Institutionen för akvatiska resurser (SLU Aqua), Sveriges lantbruksuniversitet
Forskningsartikel2021Vetenskapligt granskadÖppen tillgång
Laurila-Pant, Mirka; Mantyniemi, Samu; Ostman, Orjan; Olsson, Jens; Uusitalo, Laura; Lehikoinen, Annukka
Ecological indicator approaches typically compare the prevailing state of an ecosystem component to a reference state reflecting good environmental conditions, i.e. the desirable state. However, defining the reference state is challenging due to a wide range of uncertainties related to natural variability and measurement error in data, as well as ecological understanding. This study propose a novel probabilistic approach combining historical monitoring data and ecological understanding to estimate the uncertainty associated with the boundary value of an ecological indicator between good and poor environmental states. Bayesian inference is used to estimate the epistemic uncertainty about the true state of an indicator variable during an historical reference period. This approach replaces the traditional boundary value with probability distribution, indicating the uncertainty about the boundary between environmental states providing a transparent safety margin associated with the risk of misclassification of the indicator's state. The approach is demonstrated by applying it to a time-series of an ecological status indicator, 'Abundance of coastal key fish species', included in HELCOM's Baltic Sea regional status assessment. We suggest that acknowledgement of the uncertainty behind the final classification leads to more transparent and better-informed decision-making processes.
Status assessment; Classification uncertainty; MSFD; Perca fluviatilis; Good environmental status
Ecological Indicators
2021, volym: 120, artikelnummer: 106975
Utgivare: ELSEVIER
Kust och hav
Övrig annan naturvetenskap
Ekologi
Zoologi
https://res.slu.se/id/publ/109503