von Rosen, Dietrich
- Institutionen för energi och teknik, Sveriges lantbruksuniversitet
Forskningsartikel2023Vetenskapligt granskadÖppen tillgång
Gasana, Emelyne Umunoza; von Rosen, Dietrich; Singull, Martin
The exact distribution of a classification function is often complicated to allow for easy numerical calculations of misclassification errors. The use of expansions is one way of dealing with this difficulty. In this paper, approximate probabilities of misclassification of the maximum likelihood-based discriminant function are established via an Edgeworth-type expansion based on the standard normal distribution for discriminating between two multivariate normal populations.
Classification rule; discriminant analysis; Edgeworth-type expansion; missclassification errors
Journal of Statistical Computation and Simulation
2023, volym: 93, nummer: 17, sidor: 3185-3202
Utgivare: TAYLOR AND FRANCIS LTD
Sannolikhetsteori och statistik
https://res.slu.se/id/publ/122695