Skip to main content
SLU:s publikationsdatabas (SLUpub) (stage)(solr1:8983)

Forskningsartikel2022Vetenskapligt granskad

Penalized and ridge-type shrinkage estimators in Poisson regression model

Noori Asl, Mehri; Bevrani, Hossein; Arabi Belaghi, Reza

Sammanfattning

The paper considers the problem of estimation of the regression coefficients in a Poisson regression model under multicollinearity situation. We propose non-penalty Stein-type shrinkage ridge estimation approach when it is conjectured that some prior information is available in the form of potential linear restrictions on the coefficients. We establish the asymptotic distributional biases and risks of the proposed estimators and investigate their relative performance with respect to the unrestricted ridge estimator. For comparison sake, we consider the two penalty estimators, namely, least absolute shrinkage and selection operator and Elastic-Net estimators and compare numerically their relative performance with the other listed estimators. Monte-Carlo simulation experiment is conducted to evaluate the performance of each estimator in terms of the simulated relative efficiency. The results show that the shrinkage ridge estimators perform better than the penalty estimators in certain parts of the parameter space. Finally, a real data example is illustrated to evaluate of the proposed methods.

Nyckelord

Shrinkage estimator; LASSO; Elastic-Net; Multicollinearity; Ridge regression; Efficiency

Publicerad i

Communications in Statistics - Simulation and Computation
2022, volym: 51, nummer: 7, sidor: 4039-4056
Utgivare: TAYLOR & FRANCIS INC

SLU författare

UKÄ forskningsämne

Sannolikhetsteori och statistik

Publikationens identifierare

  • DOI: https://doi.org/10.1080/03610918.2020.1730402

Permanent länk till denna sida (URI)

https://res.slu.se/id/publ/126934